Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 305: 122400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134472

RESUMO

Cervical damage is the most prevalent type of spinal cord injury clinically, although few preclinical research studies focus on this anatomical region of injury. Here we present a combinatorial therapy composed of a custom-engineered, injectable hydrogel and human induced pluripotent stem cell (iPSC)-derived deep cortical neurons. The biomimetic hydrogel has a modular design that includes a protein-engineered component to allow customization of the cell-adhesive peptide sequence and a synthetic polymer component to allow customization of the gel mechanical properties. In vitro studies with encapsulated iPSC-neurons were used to select a bespoke hydrogel formulation that maintains cell viability and promotes neurite extension. Following injection into the injured cervical spinal cord in a rat contusion model, the hydrogel biodegraded over six weeks without causing any adverse reaction. Compared to cell delivery using saline, the hydrogel significantly improved the reproducibility of cell transplantation and integration into the host tissue. Across three metrics of animal behavior, this combinatorial therapy significantly improved sensorimotor function by six weeks post transplantation. Taken together, these findings demonstrate that design of a combinatorial therapy that includes a gel customized for a specific fate-restricted cell type can induce regeneration in the injured cervical spinal cord.


Assuntos
Medula Cervical , Células-Tronco Pluripotentes Induzidas , Traumatismos da Medula Espinal , Ratos , Humanos , Animais , Hidrogéis/química , Reprodutibilidade dos Testes , Medula Espinal , Neurônios
2.
Sci Adv ; 6(35): eabb3308, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923637

RESUMO

Understanding the dynamics of circulating tumor cell (CTC) behavior within the vasculature has remained an elusive goal in cancer biology. To elucidate the contribution of hydrodynamics in determining sites of CTC vascular colonization, the physical forces affecting these cells must be evaluated in a highly controlled manner. To this end, we have bioprinted endothelialized vascular beds and perfused these constructs with metastatic mammary gland cells under physiological flow rates. By pairing these in vitro devices with an advanced computational flow model, we found that the bioprinted analog was readily capable of evaluating the accuracy and integrated complexity of a computational flow model, while also highlighting the discrete contribution of hydrodynamics in vascular colonization. This intersection of these two technologies, bioprinting and computational simulation, is a key demonstration in the establishment of an experimentation pipeline for the understanding of complex biophysical events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...